

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Formulations with phospholipids for the oral application

Karsten Mäder Institut für Pharmazie Martin-Luther-Universität Halle-Wittenberg

karsten.maeder@pharmazie.uni-halle.de

Outline

Introduction: Challenges of oral administration

Phospholipids (PL):

- Chemical structures and behavior in water
- Biofate after oral ingestion
- How to design a PL-DDS for oral administration
- Examples
- Summary and outlook

Peroral administration

- Most commonly used
- Simple
- No pain
- Cost effective

Constant blood levelLow variability

Oral Bioavailibility depends on

Common problems of oral administrations

Low bioavailibility

Poor permeability (e.g. BCS III drugs)

Poor dissolution (e.g. BCS II drugs)

Active processes (metabolism, excretion)

Food dependent variability

Short half-life

Fig. 3. Effect of food on plasma concentrations of artemether and lumefantrine in 16 healthy Chinese participants following a single oral administration of co-artemether (80/480mg) [mean \pm SD].

Clin Drug Invest 1999 Dec; 18 (6): 467-480

Novartis Pharma

Riamet[®] 20 mg/120 mg Tabletten

- "Die Ergebnisse der Nahrungsinteraktionsstudien deuten darauf hin, dass die Resorption von Lumefantrin ohne gleichzeitige Nahrungsaufnahme sehr gering ist. Unter der Annahme einer 100%igen Aufnahme nach einer fettreichen Mahlzeit würden unter Nüchtern-Bedingungen < 10 % der Dosis aufgenommen. Die Patienten sollten daher aufgefordert werden, die Medikation zusammen mit einer Mahlzeit einzunehmen, sobald Nahrung toleriert wird."
- The results of the food interaction studies suggest that the absorption of lumefantrine is very low without concomitant food intake. Assuming a 100% intake after a high-fat meal, < 10% of the dose would be absorbed under fasting conditions. Patients should therefore be encouraged to take the medication with a meal as soon as food is tolerated."

Biofate of DDS after oral administration

Mouth (short)

Esophagus (short)

Stomach (min – hours)

small intestine (3 h) Colon (12-24 h)

↑ ↑ Bioavailability ↑ ↑
□ ↑ Amount of solubilized drug
□ ↑ Drug permeability
□ ↑ Resorption area
□ ↑ Residence time

Important processes
Solubilisation
Dilution
Digestion

Composition of duodenal fluids

Digestion of lipids (triacylglycerides)

 \bigcirc

Food intake increases solubility and dissolution kinetics of poorly soluble drugs in intestional fluids

Outline

- Introduction: Challenges of oral administration
- Phospholipids (PL):
 - Chemical structures and behavior in water

Biofate after oral ingestion

- How to design an PL-DDS for oral administration
- Examples
- Summary and outlook

Structure of Phospholipids

S. Drescher and P. van Hoogevest, *Pharmaceutics*, **12**, 1–36, 2020

Neutral: PC, PE Negatively charged: PG, PS, PI

Sources and biofate of Phospholipids

Nilsson A, Duan RD. Pancreatic and mucosal enzymes in choline phospholipid digestion. *Am J Physiol Gastrointest Liver Physiol.* (2019) 316:G425–45.

Biofate of Phospholipids (example PC)

- Enzymatic hydrolysis by sPLA2: formation of
 - Lyso-PC
 - Fatty acid
- □ Absorption > 90%
- Resynthesis of PC in enterocytes

E.M. Persson et al.

The Effects of Food on the Dissolution of Poorly Soluble Drugs in Human and in Model Small Intestinal Fluids. Pharm Res 22, 2141– 2151 (2005).

Intestinal digestion of PC by sPLA2IB

Lipid classification after Prof. Small

Leng J, Egelhaaf SU, Cates ME. Biophys J. 2003;85(3):1624-1646.

10

Outline

- Introduction: Challenges of oral administration
- Phospholipids (PL):
 - Chemical structures and behavior in water
 - Biofate after oral ingestion

How to design a PL-DDS for oral administration

- Examples
- Summary and outlook

How to design a PL-DDS for oral administration?

- Clear definition of goal
 - Increase of dissolution speed and solubility
 - Increase of permeability
 - Prolonged release
- Development of formulation strategy
- Selection of excipients and processes
- Relevant in vitro tests (dilution in relevant media, digestion assay)
- Preclinical in vivo studies
- Clinical studies

Consider variability of pH-values: stomach

Gastric pH values (fasted state)

Figure 3. Box plots (box: 50%, whisker: 5%–95%, square: mean, asterisks max/min) of gastric pH values for both studies.

Consider variability of pH-values: intestine

Comparison of pH ranges in proximal (a) and distal (b) small intestine (box: 50%, whisker: 5%–95%, square: mean, asterisks max/min) (n = 10).

Koziolek et al., JOURNAL OF PHARMACEUTICAL SCIENCES 104:2855–2863, 2015

Examples of physiological dissolution media

	Fasted State Simulated Intestinal	Fed State Simulated Intestinal Fluid	Simulated Gastric Fluid	Simulated Intestinal Fluid
	riulu (rassir)	(FeSSIF)	(SGF)	
BA	Sodium taurocholate 3 mM	Sodium taurocholate 15 mM	NaCl 34.2 mM	Monobasic potassium
PC	Phosphatidylcholine 0,75 mM	Phosphatidylcholine 3,75 mM	HCI 82.2 mM	phosphate 39 mM
	Sodium hydrogen-phosphate	Acetic acid 144 mM	Pepsin (800-2500 u/mg)	Sodium hydroxide
	28.66 mM	Sodium chloride 173 mM Sodium	3.2 g	15.4 mM
	Sodium chloride 106 mM	hydroxide q.s.	Water ad 1000ml	Pancreatin 10 g
	Sodium hydroxide q.s.	pH: 5.0	pH: 1.2	Water ad 1000 ml
	pH: 6.5			pH: 6.8

Outline

- Introduction: Challenges of oral administration
- Phospholipids (PL):
 - Chemical structures and behavior in water
 - Biofate after oral ingestion
- How to design a PL-DDS for oral administration

Examples

Summary and outlook

Phospholipids as drug products

Fachinformation

SANOFI 🎝

1. Bezeichnung des Arzneimittels

Essentiale[®] Kapsel 300 mg Hartkapsel

2. Qualitative und quantitative Zusammensetzung

Wirkstoff:

1 Hartkapsel enthält:

300 mg entölte angereicherte Phospholipide aus Sojabohnen. Die Phospholipide sind quantifiziert auf 73–79 % Phosphatidylcholin, enthalten bis zu 7 % Phosphatidylethanolamin und weniger als 0,5 % Phosphatidylinositol.

Essentiale[®] Kapsel 300 mg

Alter bzw. (Körpergewicht)	Einzeldosis	Tagesgesamtdosis
Jugendliche	2 Hartkapseln	3 mal täglich 2 Hartkapseln
(ca. 43 kg)	(600 mg Phospholipide aus	(1800 mg Phospholipide aus
und Erwachsene	Sojabohnen)	Sojabohnen)

Zunahme der Beschwerden sowie bei Auftreten anderer unklarer Beschwerden sollte ein Arzt aufgesucht werden."

Kinder

Zur Anwendung von Essentiale Kapsel 300 mg bei Kindern liegen keine ausreichen-

Erkrankungen des Gastrointestinaltrakts Häufigkeit nicht bekannt: gastrointestinale Beschwerden in Form von Magenbeschwerden, weichem Stuhl und/oder Diarrhoe.

Erkankungen der Haut und des Unterhautzellgewebes

PLs as solubilizers: organic solutions

Rapamune 1mg/ml Oral Solution

- Polysorbate 80
- Phosal 50 PG:
 - ((3-sn-Phosphatidyl)choline (soy) (= lecithin)
 - Propylene glycol
 - Glycerolmono/dialkanoate
 - Ethanol
 - Soy derived fatty acids
 - Palmitoylascorbic acid

1 mL contains: < 25 mg Ethanol, around 350 mg PG, 20 mg soy oil

History of MM

Untersuchungen über die Größe, Struktur und Dynamik von Gallensäure/Lecithin-Mischmicellen

Size, Structure, and Dynamics of Bile Salt/Lecithin Mixed Micelles

Ch. Gähwiller, C. von Planta, D. Schmidt und H. Steffen Zentrale Forschungseinheiten F. Hoffman-La Roche A.G. Basel

(Z. Naturforsch. 32 c, 748-755 [1977]; eingegangen am 8. Juni 1977)

Phospholipids as solubilizers: MM for oral/ i.m. / i.v

Fachinformation

Konakion[®] MM 10 mg

1. BEZEICHNUNG DES ARZNEIMITTELS

Konakion[®] MM 10 mg

Dosierungsempfehlungen zur Vitamin-K $_1$ -Therapie bei Patienten mit asymptomatisch hohem INR mit oder ohne leichte Blutungen

Glycocholic acid
 (3-sn-Phosphatidyl)cholin (soy)
 NaOH, HCl, water for injection

Learning from nature! MM as solvent Long history (Diazepam MM) Thermodynamic stable system No organic solvents

Example antiinflammatory PLs

Dr. Miriam Klein

PS and PG have antiinflammatory properties Liposomes

vs.

Mixed micell

What is the best DDS?

- Production
- Stability
- Activity

European Journal of Pharmaceutical Sciences Volume 152, 1 September 2020, 105451

Phosphatidylserine (PS) and phosphatidylglycerol (PG) enriched mixed micelles (MM): A new nanodrug delivery system with anti-inflammatory potential?

Miriam Elisabeth Klein^a, Max Rieckmann^b, Henrike Lucas^a, Annette Meister^c, Harald Loppnow^b, Karsten Mäder^a

Phospholipid Mixed micelle

- Phospholipid Na- Cholate 1:1 (w/w)
- Phospholipid:

Bile acid

- Main component: PC
- 0 30 % PS
- 0 30 % PG

Mixed Micelles

No Hemolytic activity and cell toxicity of both

Bioactivity: liposomes vs. mixed micelles

similar antiinflammatory activities of liposomes and MM

Advantages MM oral administration

- ✓ Easier to make
- ✓ Thermodynamic stable
- Easier to transform into a solid dosage form

Concepts for solid dosage forms of liposomes

Problems:

- Sticky and hygroscopic properties of many PLs
- Liposomes do (in most cases) not form spontaneously.

Possible solutions:

- Encapsulation / embedding in solid materials (amphiphilic starches, maltodextrin)
- Adsorption in porous carriers (phosphates, carbonates, silicates)

Adsorption porous CaCO₃

MDPI

Article

Spontaneous In Situ Formation of Liposomes from Inert Porous Microparticles for Oral Drug Delivery

Maryam Farzan ¹^(b), Gabriela Québatte ¹^(b), Katrin Strittmatter ¹, Florentine Marianne Hilty ², Joachim Schoelkopf ²^(b), Jörg Huwyler ¹^(b) and Maxim Puchkov ¹,*^(b)

Example: Phospholipid extrudates

C. Zlomke, J. Albrecht, K. Mäder: *Pharmaceutics* **2020**, *12*, 817.

- Goal here: local brain delivery, but oral applications possible
- Easy to extrudate at temp. < 100°C
- Ratio saturated / unsat. PC determines extrusion temp. and mechanical properties

Vesicle formation a the Interface

Example: Phospholipid extrudates oral

AAPS PharmSciTech (2019) 20: 159 DOI: 10.1208/s12249-019-1366-3

Research Article Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery Guest Editor: Sanyog Jain

Evaluation of Hydrogenated Soybean Phosphatidylcholine Matrices Prepared by Hot Melt Extrusion for Oral Controlled Delivery of Water-Soluble Drugs

Marina Kolbina,¹ Adrian Schulte,² Peter van Hoogevest,³ Martin Körber,^{4,5} and Roland Bodmeier¹

Fig. 2. Macroscopic pictures of extrudates: (upper) drug-free HSPC and (lower) 50% theophylline-loaded extrudate

Overcoming poor permeability with PLs

Overcoming Efflux pumps by PLs?

European Journal of Pharmaceutical Sciences 108 (2017) 13-22

Contents lists available at ScienceDirect

European Journal of Pharmaceutical Sciences

journal homepage: www.elsevier.com/locate/ejps

The application of P-gp inhibiting phospholipids as novel oral bioavailability enhancers — An *in vitro* and *in vivo* comparison

Manuel Weinheimer^{a,*}, Gert Fricker^b, Jürgen Burhenne^c, Patricia Mylius^a, Rolf Schubert^a

^a Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University Freiburg, Hermann-Herder-Str. 9, D-79104 Freiburg, Germany

^b Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuheimer Feld 329, D-69120 Heidelberg, Germany

^c Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany

Increased lymphatic uptake by PLs?

Outline

- Introduction: Challenges of oral administration
- Phospholipids (PL):
 - Chemical structures and behavior in water
 - Biofate after oral ingestion
- How to design a PL-DDS for oral administration
- Examples

Summary and outlook

PLs can contribute to solve these problems of oral administration:

Poor permeability (e.g. BCS III drugs)

- Enhance permeability drug specific
- Poor dissolution (e.g. BCS II drugs)
 - Increase dissolution kinetics
 - Increase solubility
- Food dependent variability
 - Develop formulations which are less food dependent
- Short half live
 - Develop formulation for oral controlled release (requires absorption in colon)

Examples of projects

Phospholipid

Forschungszentrum/Research Center Heidelberg

- Liposomes as oral delivery systems for poorly soluble compounds: behavior during digestion and absorption processes
- Phospholipids as excipients in Amorphous Solid Dispersions an attempt to establish hot-melt-extrusion for oral formulations of poorly soluble drugs
- Bioactive liposomes for the treatment of Non-Alcoholic SteatoHepatitis (NASH)
- Co-amorphous drug-lecithin systems bridging the gap between amorphous solid disperions and lipid based drug delivery
- Enabling oral delivery of peptides by designing phospholipid complexes for self-emulsifying drug delivery systems
- Oral mixed micelle formulations a novel phospholipid-based platform for safe and effective pediatric drug delivery

Benefits and problems of phospholipids

Benefits

- Natural source
- Structure very common in nature, including the human body
- Biodegradable
- Excellent safety profile
- Decades of research, very good knowledge and database

Problems

- Supplier dependent quality
- Often hygroscopic, sticky material
- Chemical degradation by oxidation and hydrolysis
- Precipitation by Ca²⁺ or Mg²⁺

The future...

- □ ↑ Importance of PLs
 - Oral
 - Parenteral
 - Pulmonal
- ↑ ↑ Mixed Micelles
 ↑ ↑ ↑ Monoacyl-PLs

hank you!

karsten.maeder@pharmazie.uni-halle.de

